Jumat, 27 April 2012

Differential Brain Development with Low and High IQ in Attention-Deficit/Hyperactivity Disorder.




HubMed - Brain





Differential Brain Development with Low and High IQ in Attention-Deficit/Hyperactivity Disorder.



PLoS One. 2012; 7(4): e35770
de Zeeuw P, Schnack HG, van Belle J, Weusten J, van Dijk S, Langen M, Brouwer RM, van Engeland H, Durston S

Attention-Deficit/Hyperactivity Disorder (ADHD) and intelligence (IQ) are both heritable phenotypes. Overlapping genetic effects have been suggested to influence both, with neuroimaging work suggesting similar overlap in terms of morphometric properties of the brain. Together, this evidence suggests that the brain changes characteristic of ADHD may vary as a function of IQ. This study investigated this hypothesis in a sample of 108 children with ADHD and 106 typically developing controls, who participated in a cross-sectional anatomical MRI study. A subgroup of 64 children also participated in a diffusion tensor imaging scan. Brain volumes, local cortical thickness and average cerebral white matter microstructure were analyzed in relation to diagnostic group and IQ. Dimensional analyses investigated possible group differences in the relationship between anatomical measures and IQ. Second, the groups were split into above and below median IQ subgroups to investigate possible differences in the trajectories of cortical development. Dimensionally, cerebral gray matter volume and cerebral white matter microstructure were positively associated with IQ for controls, but not for ADHD. In the analyses of the below and above median IQ subgroups, we found no differences from controls in cerebral gray matter volume in ADHD with below-median IQ, but a delay of cortical development in a number of regions, including prefrontal areas. Conversely, in ADHD with above-median IQ, there were significant reductions from controls in cerebral gray matter volume, but no local differences in the trajectories of cortical development.In conclusion, the basic relationship between IQ and neuroanatomy appears to be altered in ADHD. Our results suggest that there may be multiple brain phenotypes associated with ADHD, where ADHD combined with above median IQ is characterized by small, more global reductions in brain volume that are stable over development, whereas ADHD with below median IQ is associated more with a delay of cortical development.










Enhanced hippocampal long-term potentiation and fear memory in btbd9 mutant mice.



PLoS One. 2012; 7(4): e35518
Deandrade MP, Zhang L, Doroodchi A, Yokoi F, Cheetham CC, Chen HX, Roper SN, Sweatt JD, Li Y

Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS), a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS.







Tidak ada komentar:

Poskan Komentar